Microsporidia Intracellular Development Relies on Myc Interaction Network Transcription Factors in the Host
نویسندگان
چکیده
Microsporidia are ubiquitous parasites that infect a wide range of animal hosts, and these fungal-related microbes undergo their entire replicative lifecycle inside of host cells. Despite being widespread in the environment and causing medical and agricultural harm, virtually nothing is known about the host factors important to facilitate their growth and development inside of host cells. Here, we perform a genetic screen to identify host transcription factors important for development of the microsporidian pathogen Nematocida parisii inside intestinal cells of its natural host, the nematode Caenorhabditis elegans Through this screen, we identified the C. elegans Myc family of transcription factors as key host regulators of microsporidia growth and development. The Mad-like transcription factor MDL-1, and the Max-like transcription factors MXL-1 and MXL-2 promote pathogen levels, while the Myc-Mondo-like transcription factor MML-1 inhibits pathogen levels. We used epistasis analysis to show that MDL-1 and MXL-1, which are thought to function as a heterodimer, appear to be acting canonically. In contrast, MXL-2 and MML-1, which are also thought to function as a heterodimer, appear to be acting in separate pathways (noncanonically) in the context of pathogen infection. We also found that both MDL-1::GFP and MML-1::GFP are expressed in intestinal cells during infection. These findings provide novel insight into the host transcription factors that regulate microsporidia development.
منابع مشابه
Gene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining
Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...
متن کاملMycobacterium avium subsp. paratuberculosis induces differential cytosine methylation at miR-21 transcription start site region
Mycobacterium aviumsubspecies paratuberculosis (MAP), as an obligate intracellular bacterium, causes paratuberculosis (Johne’s disease) in ruminants. Plus, MAP has consistently been isolated from Crohn’s disease (CD) lesions in humans; a notion implying possible direct causative ...
متن کاملAntioxidant activity of polyphenolic myricetin in vitro cell-free and cell-based systems
Myricetin (Myc) is one of the most important flavonoids in diet due to its abundance in foods with the highest antioxidant activity. The antioxidant activity of Myc was studied in cell-free and cell-based systems to evaluate the ROS protection efficiency of Myc. The studies were based on the assessment of reducing power of Myc according to ferric ion reduction and intracellular ROS level measur...
متن کاملGenome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis
Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses...
متن کاملThe Development of Genetic Modification Techniques in Intracellular Parasites and Potential Applications to Microsporidia
Microsporidia constitute a large phylum of eukaryotic obligate intracellular pathogens that can infect a variety of animal hosts. Understanding the biology of microsporidia is severely limited by our current inability to genetically manipulate these parasites. With a growing number of microsporidian genome sequences available and the revolution of successful CRISPR/Cas9 genome editing in virtua...
متن کامل